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We show that the Lorenz system can be synchronized through the continuous feedback control method and
study how the synchronization efficiency is related to the choice of the perturbation applied to the system.
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Since it was discussed by Fujisaka and Yamada@1# and
demonstrated by Pecora and Carroll@2#, synchronization be-
tween two chaotic systems has received considerable atten-
tion. The most diffused approach to the problem is based on
feedback control, which has been clearly described in the
pioneering work of Ott, Grebogi, and York~OGY! @3#.
Though the application of the OGY method requires a per-
manent analysis of the state of the system, it deals with dis-
crete temporal changes of some parameter, which makes the
method efficiency sensible to the presence of noise. To over-
come such limitations Pyragas@4# proposed an alternative
approach to chaos control based on a small time continuous
perturbation. Synchronization of two chaotic systems by
continuous feedback control was later studied by Kapitaniak
@5# and Malescio@6#. This method is applied here to achieve
synchronization of the Lorenz system. We focus on an im-
portant point outlined in our previous work@6#, i.e., the de-
pendence of the synchronization efficiency on the perturba-
tion used as a feedback. We will show how the choice of the
output variable, as well as that of the equation perturbed,
may influence sensibly the synchronizing effect of the per-
turbation.

Given two chaotic systems

ẋ5 f ~x!, ~1!

ẏ5 f ~y!,

with x,yPRn, calledA andB, respectively, let us assume
that some state variable, i.e.,xj andyj ( j51, . . . ,n), can be
measured. The quantity

F j~ t !5K@yj~ t !2xj~ t !#, ~2!

whereK is an adjustable positive weight, can then be used as
a negative feedback introduced into systemA to force its
solution over that of systemB, so that synchronization even-
tually follows. Since in this regimexj (t)5yj (t), F j (t) be-
comes zero and the two systems are practically uncoupled,
thus obeying the same dynamics as in absence of the pertur-
bation.

We apply the above outlined procedure to the Lorenz sys-
tem @7#:

ẋi5 f i~x1 ,x2 ,x3!, ~3!

where i51,2,3, and f 15Px12Px2, f 252x1x31Rx1
2x2 , f 35x1x22Bx3 . The parametersP, R, and B are

chosen so to correspond to a chaotic behavior (P510,
R528, B58/3). In order to achieve synchroniza-
tion, the two systems are coupled by perturbing one of
them ~calledA in the following! through the addition of a
feedback control. Different ways of perturbing systemA are
possible, depending on the choice of the output variable and
on that of the equation perturbed~we will assume for sim-
plicity that only one equation at a time can be perturbed!.
The global system obtained by adding the perturbation
F j (t) to the equation governing the evolution ofxk(t), can
be written

ẋk5 f k~x1 ,x2 ,x3!1F j~ t !,

ẋl5 f l~x1 ,x2 ,x3!, lÞk, ~4!

ẏi5 f i~y1 ,y2 ,y3!,

where i ,l51,2,3. We considered all the possible combina-
tions of k and j ~with k, j51,2,3) and in the following we
will refer to each of these different ways of perturbing the
system with the labelk j , where k indicates the equation
modified andj the output variable. We exploited a numerical
solution of system~4! using the fourth order Runge-Kutta
method. Calculations were carried out in double precision@8#
with time stepdt50.01 ~test runs were also performed with
a time step of 0.001). As a synchronization criterion we re-
quire that the distanceD(t) in the phase space between
the orbits of the two coupled systems is of the order of
the precision of the computer used, i.e.,D(t),e,
where D(t)5$@x1(t)2y1(t)#

21@x2(t)2y2(t)#
21@x3(t)

2y3(t)#
2%1/2 and e510214. For any given perturbation the

results are averaged overN5100 independent runs with ran-
domly chosen initial conditions. Thus we can define the syn-
chronization fractionl5Ns /N, whereNs is the number of
runs for which synchronization is attained, with the required
precision, within the maximum run length allowed (53105

iterations!.
Figures 1~a!–1~c! show howl depends on the coupling

stiffnessK when the equation governing, respectively, the
evolution of x1(t), x2(t), and x3(t) is modified through
the addition ofF j (t), with j51,2,3. According to the dif-
ferent ways of perturbing the system, the synchroniza-
tion efficiency varies remarkably. In the presence of per-
turbations 11,12,21,22 we observe a well defined synchroni-
zation threshold: when the coupling strengthK is greater
than a given value, synchronization is attained for all
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the runs performed@in one case (12), however, at higher
K ’s the perturbation loses completely its capacity to in-
duce synchronization#. For perturbations 13,31,33, the syn-
chronization fraction is definitely smaller than one for
every value ofK considered. Finally we note that per-
turbations 23 and 32 do not have, in the interval con-
sidered, any synchronizing effect at all. This conclusion
was verified by performing longer runs~up to 106 iterations!
@9#.

A qualitative understanding of the intriguing variety of
behaviors above illustrated may be reached on the basis of
simple considerations. We first observe that, once one has
selected the equation to be perturbed, the maximum synchro-
nizing effect~evaluated taking into account both the values
of l and the range ofK ’s over whichl is different from
zero! is obtained by choosing as output variable the same
variable whose time evolution is governed by the equation
perturbed@i.e., when, in system~4!, j5k#. In this case, in
fact, the feedback is a direct one and presumably quite effi-
cient in inducing synchronization: the perturbation, propor-
tional to the differenceyj (t)2xj (t), directly modifies the
growth rate ofxj (t), increasing, or decreasing it, according
that xj (t) is smaller, or greater, thanyj (t). For jÞk the
synchronizing effect of the perturbation may be expected to

be proportional to the ‘‘degree’’ of coupling of the variables
xj (t) and xk(t). This can be estimated by referring to the
physical model schematized by the Lorenz system: a viscous,
thermally conducting fluid in a two dimensional rectangular
flow region, heated uniformly along the bottom edge in such
a way that the temperature difference between fluid at the top
and bottom edge is kept constant. In Lorenz approximate
model the variablex1(t) is related to the fluid velocity of a
convective circulation in a single eddy that fills the rectangle,
x2(t) describes a temperature distribution with fluid warmer
on one side of the rectangle andx3(t) is related to the ver-
tical profile of temperature@10#. From this picture one ex-
pects thatx1(t) is more strongly connected tox2(t) than to
x3(t), whereasx2(t) andx3(t) appear poorly correlated with
each other. This scenery is in reasonable agreement with the
results shown in Fig. 1.

In conclusion, it appears evident that the choice of the
perturbation is a crucial point in the continuous feedback
control of chaos. In fact, it affects greatly the synchroniza-
tion efficiency and may even prove completely ineffective in
inducing synchronization. Though the results reported are
specific of a given system, they point out the need for a
general theory able to predict the optimal choice of the per-

FIG. 1. Plot of the synchronization fractionl versus coupling stiffnessK. The equation governing the evolution of~a! x1(t),
~b! x2(t), and ~c! x3(t) is perturbed through the addition ofF j (t), with j51,2,3. Curves are labeled with the corresponding value ofj
and are furthermore differentiated through the line style. Results were averaged over 100 independent runs with run length of 53105

iterations.
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turbation, i.e., that yielding the maximal efficiency at smaller
coupling stiffness. This, in fact, in addition to provide a bet-
ter understanding of the synchronization process, could be
essential in possible practical applications.
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